8
Parallel Algorithms

G.A.P. Kindervater, J.K. Lenstra
Centre for Mathematics and Computer Science

Amsterdam
CONTENTS
1. MODELS (f) other interconnection networks: permutting
1.1. Classification and surveys and sorting
1.2. Interconnection networks (g) interconnection networks: data transmission
2. COMPLEXITY 4.2. Graph theory
2.1. Surveys (a) shared memory computers
2.2. Log space completeness for § (b) interconnection networks
2.3. Parallel time versus sequential space (c) distributed algorithms
2.4. Simultaneous resource bounds 5. COMBINATORIAL OPTIMIZATION
3. NUMERICAL PROBLEMS 5.1. Well-solvable problems: polylog parallel
3.1. Evaluation of expressions and recurrence algorithms
relations (a) sequencing and scheduling
3.2. Numerical analysis and algebra (b) miscellaneous
3.3. Nonlinear optimization 5.2. Well-solvable problems, log space complete
4. COMBINATORICS for P
4.1. Sorting and related problems (a) maximum flow
() sorting networks (b) linear programming
(b) shared memory computers: merging 5.3. NP-hard problems and enumerative methods
(c) shared memory computers: sorting (a) knapsack
(d) shared memory computers: convex hull (b) traveling salesman
(&) mesh connected networks: permuting and (\¢) dynamic programming
sorting (d) branch-and-bound

Parallel computing is receiving a rapidly increasing amount of attention. In
theory, a collection of processors that operate in parallel can achieve substan-
tial speedups. In practice, technological developments are leading to the actual
construction of such devices at low cost. Given the inherent limitations of trad-
itional sequential computers, these prospects turn out to be very stimulating
for researchers interested in the design of computers and algorithms.

In this bibliography, we have tried to collect the literature on parallel com-
puting that is relevant for the mathematics of operations research, in particular
for the theory of combinatorial optimization. Its organization is as follows.

§1 is concerned with machine models designed for parallel computation.

Parallel Algorithms 107

Rather than including the complete literature on this topic, which could fill a
sizeable bibliography by itself, we have only surveyed papers that are of gen-
eral interest or that define models referred to in later sections. Many of the
references in §4 and §5 mention machine models for which specific results
have been obtained, and the reader who is interested in the characteristics of,
say, an SIMD machine with shared memory, simultaneous reads and no simul-
taneous writes should consult §1.

§2 deals with the complexity theory of parallel computation. Beyond the
basic distinction between solvability in polynomial time and completeness for NP
in sequential computation, many concepts have been defined and analyzed that
are relevant for parallel computing. Again, we have not aimed at a complete
survey of this area, but important notions like solvability in polylog parallel time
and log space completeness for ¥ are introduced here.

§3 gives results for numerical problems. Problems like evaluating arithmetic
expressions and recurrence relations, solving systems of linear equations and
computing eigenvalues have been subjected to parallelization earlier and more
extensively than combinatorial problems (lhistoire se répéte: floating point
arithmetic was well understood before anyone had heard of the traveling sales-
man). §§3.1—2 list references on those subjects, without much comment. §3.3
contains three papers on nonlinear optimization, an area in which parallel com-
puting finds natural and potentially promising applications.

§4 reviews 51 papers on elementary combinatorial problems: typical subjects
from computer science like finding the maximum, merging and sorting in §4.1,
and problems from algorithmic graph theory like finding connected com-
ponents, spanning trees and shortest paths in §4.2. In each case, the papers are
grouped together according to the type of machinery involved, such as general
parallel computers with a shared memory and specific fixed interconnection
networks.

§5 finally discusses parallelism in combinatorial optimization. We have been
able to find 18 papers on linear programming, maximum flow, knapsack, trav-
eling salesman and scheduling problems and on dynamic programming and
branch-and-bound methods. The formidable power of parallel computing in
conjunction with the firm roots of combinatorial optimization in the theory of
design and analysis of algorithms and computational complexity seems to hold
great promise for a further development of this area in the very near future.

We are grateful to E.L. Lawler, J. van Leeuwen, F. Maffioli and G.L.
Nemhauser, who brought many papers to our attention.

1. MODELS
1.1. Classification and surveys
M.J. Flynn (1966). Very high-speed computing systems. Proc. IEEE 54, 1901-

1909.
Four classes of parallel computers are introduced:

108 G.A.P. Kindervater, J.K. Lenstra

(1) SISD: single instruction stream—single data stream; one instruction is per-
formed at a time, on one set of data; e.g.,, a+b.
(2) SIMD: single instruction stream—multiple data stream; one type of instruc-
tion is performed at a time, possibly on different data; e.g., a +b and ¢ +d.
(3) MISD: multiple instruction stream—single data stream; different instruc-
tions on the same data can be performed at a time; e.g., @ +b and a —b.
(4) MIMD: multiple instruction stream—multiple data stream; different instruc-
tions on different data can be performed at a time; e.g., a +b and ¢ —d.
Beyond Flynn’s classification scheme, it makes sense to subdivide the last
class into synchronized machines, which wait for each other after each set of
instructions and then perform the next set, and asynchronous machines, which
run independently and wait only if information from other processors is
needed. Systolic algorithms are highly synchronized processes: the processing
elements act rhythmically on regular streams of data passing through the net-
work. Distributed algorithms are typical asynchronous processes: the processors
perform their own local algorithms and communicate by sending messages
every now and then.

J.T. Schwartz (1980). Ultracomputers. ACM Trans. Programming Languages
and Systems 2, 484-521.

Distinction is made between paracomputers, where the processors have
simultaneous access to a shared memory, and ultracomputers, where each pro-
cessor communicates directly with a fixed number of other processors through
an interconnection network. Whereas paracomputers are primarily of theoreti-
cal interest, ultracomputers are more realistic and can be quite efficient at the
same time.

Important in this bibliography (although not dealt with by Schwartz) is the
way in which shared memory computers handle read and write conflicts, which
occur when several processors try to read from or to write into the same
memory location at the same time. If read [write] conflicts are (dis-)allowed, we
speak of (no) simultaneous reads [writes].

G. Ausiello, P. Bertolazzi (1982). Parallel computer models: an introduction.
IBM Symp. Parallel Processing, Rome, March 1982.

In this introduction to models for parallel computation, both theoretical
and practical models are considered.

L.S. Haynes, RL. Lau, D.P. Siewiorek, D.W. Mizell (1982). A survey of
highly parallel computing. JEEE Comput. 15.1, 9-24.

A survey of the different types of practical parallel computer structures is
given.

L.G. Valiant (1983). Parallel computation. J.W. de Bakker, J. van Leeuwen
(eds.). Foundations of Computer Science 1V, Distributed Systems: Part 1, Algo-
rithms and Complexity, Mathematical Centre Tract 158, Centre for

Parallel Algorithms 109

Mathematics and Computer Science, Amsterdam, 35-48.
This review discusses characteristics of problems that make them amenable

to fast parallel computation, as well as realistic computer architectures that are
suitable for such computations.

U. Vishkin (1983). Synchronous Parallel Computation - a Survey, Preprint,
Courant Institute, New York University.

A survey of theoretical models for parallel computation (for which existing
algorithms are reviewed) and of their relation to realistic machines.

1.2. Interconnection nerworks

S.H. Unger (1958). A computer oriented toward spatial problems. Proc. IRE
46, 1744-1750.

Introduction of the two-dimensional mesh connected network. Each proces-
sor is identified with an ordered pair (i,j) (i,j = l,..,n) and processor (i,j) is
connected to processors (i =1,j) and (i,j *=1), provided they exist.

J.S. Squire, S.M. Palais (1963). Programming and design considerations of a
highly parallel computer. Proc. AFIPS Spring Joint Computer Conf. 23, 395-
400.

Description of the cube connected network. It can be seen as a hypercube
with processors at the vertices and interconnections along the edges.

H.S. Stone (1971). Parallel processing with the perfect shuffle. IEEE Trans.
Comput. C-20, 153-161.

A network with interconnections that imitate a perfect shuffle of a deck of
cards.

J.L. Bentley, H.T. Kung (1979). A tree machine for searching problems. Proc.
1979 Internat. Conf. Parallel Processing, 257-266.

The interconnection pattern consists of two binary trees with common
leaves.

F.P. Preparata, J. Vuillemin (1981). The cube-connected cycles: a versatile net-
work for parallel computation. Comm. ACM 24, 300-309.

The cube connected cycles network can be seen as a cube connected network
with each processor replaced by a cyclicly connected series of processors. Each
of them is connected to at most three others.

H.J. Siegel (1977). Analysis techniques for SIMD machine interconnection net-
works and the effects of processor address masks. IEEE Trans Comput. C-26,
153-161.

H.J. Siegel (1979). A model of SIMD machines and a comparison of various
interconnection networks. IEEE Trans. Comput. C-28, 907-917.

110 G.A.P. Kindervater, J.K. Lenstra

Both papers deal with the comparison of interconnection networks. Tech-
niques for simulating one network by another are given.

Z. Galil, W.J. Paul (1983). An efficient general-purpose parallel computer. J.
Assoc. Comput. Mach. 30, 360-387.

A universal parallel computer, which can simulate any reasonable parallel
machine efficiently.

F.P. Preparata (1982). Algorithm design and VLSI architectures. IBM Symp.
Parallel Processing, Rome, March 1982.

Outline of desirable features for VLSI implementable networks. Some
specific interconnection networks are considered in detail.

2. COMPLEXITY
2.1. Surveys

S.A. Cook (1981). Towards a complexity theory of synchronous parallel com-
putation. Enseign. Math. (2) 27, 99-124.

This expository paper surveys machine models and complexity classes for
parallel computations.

D.S. Johnson (1983). The NP-completeness column: an ongoing guide; seventh
edition. J. Algorithms 4, 189-203.

Section 2 of this edition is a brief review of the complexity theory of paral-
lel computing,

A parallel RAM with an unbounded number of processors, shared memory,
simultaneous reads and no simultaneous writes is introduced, for which the
parallel computation thesis (see §2.3) holds: the class of languages it can recog-
nize in polynomial time is precisely PSPACE, the class of languages recogniz-
able by a sequential machine in polynomial space. If only a polynomial
number of processors is allowed, the class of languages recognizable in parallel
polynomial time shrinks from ?SPACE to 9, the class of languages recogniz-
able in sequential polynomial time.

Many problems can be solved in polylog parailel time, i.e., time that is poly-
nomially bounded in the logarithm of problem size (with unbounded parallel-
ism); see §§3—5 for examples. By the parallel computation thesis, these prob-
lems would form the class POLYLOGSPACE of problems solvable in polylog
sequential space. Other problems have been shown to be log space complete for
?, ie., (i) they belong to ¥ and (ii) each problem in @ can be reduced to any of
them by a transformation using logarithmic work space; see §2.2 and §5.2 for
examples. If any such problem can be solved in polylog space, then 9C
POLYLOGSPACE. Since this inclusion is not expected to be true, such prob-
lems are unlikely to be solvable in polylog space or in polylog parallel time.

New classes arise if simultaneous resource bounds (see §2.4) are imposed.

Parallel Algorithms 111

E.g., MC is the class of problems solvable in polylog parallel time using only a
polynomial number of processors, and SC is the class of problems solvable in

polynomial sequential time using polylog space. Research is oriented towards
questions like NC="75C.

2.2. Log space completeness for 9

S.A. Cook (1974). An observation on time-storage trade off. J. Comput. Sys-
tem Sci. 9, 308-316.

A path system is a quadruple § = <X ,R,S,U>>, where X is a finite set of
nodes, R is a three place incidence relation on X, S CX is a set of source
nodes, and U CX is a set of terminal nodes. § is solvable if at least one node
in S is contained in the least set A such that U CA and such that, if y,z €4
and R(x,y,z) holds, then x €4. Cook shows that each language of time com-
plexity 7'(n) is reducible in storage log(7'(n)) to the set of strings coding solv-
able path systems.

N.D. Jones, W.T. Laaser (1977). Complete problems for deterministic polyno-
mial time. Theoret. Comput. Sci. 3, 105-117.

The unit resolution problem is the problem of determining whether a propo-
sitional formula in conjunctive normal form can be proved unsatisfiable by,
roughly speaking, substituting the literals in unit clauses. This problem is
shown to be log space complete for @. Corollaries give similar results for other
problems. For an application, see [Dobkin, Lipton & Reiss 1979] (§ 5.2(b)).

R.E. Ladner (1975). The circuit value problem is log space complete for 9.
SIGACT News 7.1, 18-20.

The circuit value problem is the problem of determining the output of a cir-
cuit consisting of AND and NOT gates, given its input. This problem is shown to
be log space complete for ¢ by simulating Turing machines by combinatorial
circuits.

L.M. Goldschlager (1977). The monotone and planar circuit value problems
are log space complete for P. SIGACT News 9.2, 25-29.

A circuit is monotone if it consists of AND and OR gates; it is planar if it has
a cross free planar embedding. The monotone and planar circuit value prob-
lems are shown to be log space complete for ® by a log space transformation
from the circuit value problem (see [Ladner 1975] above). For an application,
see [Goldschlager, Shaw & Staples 1982] (§ 5.2(a)).

2.3. Parallel time versus sequential space
AK. Chandra, D.C. Kozen, L.J. Stockmeyer (1981). Alternation. J. Assoc.

Comput. Mach. 28, 114-133.
L.M. Goldschlager (1982). A universal connection pattern for parallel

112 G.A.P. Kindervater, J.K. Lenstra

computers. J. Assoc. Comput. Mach. 29, 1073-1086.

Statement of a hypothesis known as the parallel computation thesis: time
bounded parallel machines are polynomially related to space bounded sequential
machines; that is, for any function 7'(n), the class of languages recognizable by
a machine with unbounded parallelism in time T(n)°® (i.e., polynomial in
T(n)) is equal to the class of languages recognizable by a sequential machine
in space T(n)°"). Evidence is given by proving the thesis for some well-
behaved time bounds 7T'(n) on several parallel machine models.

J. Hartmanis, J. Simon (1974). On the power of multiplication in random
access machines. Proc. 15th Annual ACM Symp. Switching and Automata
Theory, 13-23.
V.R. Pratt, LJ. Stockmeyer (1976). A characterization of the power of vector
machines. J. Comput. System Sci. 12, 198-221.
W.J. Savitch, M.J. Stimson (1979). Time bounded random access machines
with parallel processing. J. Assoc. Comput. Mach. 26, 103-118.
S. Fortune, J. Wyllie (1978). Parallelism in random access machines. Proc.
10th Annual ACM Symp. Theory of Computing, 114-118.
A. Borodin (1977). On relating time and space to size and depth. SIAM J.
Comput. 6, 733-744.
J.H. Reif (1982). On the power of probabilistic choice in synchronous parallel
computations. M. Nielsen, E.M. Schmidt (eds.). Proc. 9th Internat. Coll. Auto-
mata, Languages and Programming, Lecture Notes in Computer Science 140,
Springer, Berlin, 442-450.

These papers further support the parallel computation thesis.

2.4. Simultaneous resource bounds

N. Pippenger (1979). On simultaneous resource bounds (preliminary version).
Proc. 20th Annual IEEE Symp. Foundations of Computer Science, 307-311.

W.L. Ruzzo (1981). On uniform circuit complexity. J. Compur. System Sci. 22,
365-383.

P.W. Dymond, S.A. Cook (1980). Hardware complexity and parallel computa-
tion (preliminary version). Proc. 21st Annual IEEE Symp. Foundation of Com-
puter Science, 360-372.

JW. Hong (1980). On similarity and duality of computation (extended
abstract). Proc. 2Ist Annual IEEE Symp. Foundations of Computer Science,
348-359.

These papers investigate an extended version of the parallel computation
thesis, formulated as follows in [Dymond & Cook 1980]: (i) parallel time and
hardware requirements are simultaneously polynomially related to sequential (Tur-
ing machine) reversal and space requirements; (ii) parallel time and space require-
ments are polynomially related.

Parallel Algorithms 113

3. NUMERICAL PROBLEMS
3.1. Evaluation of expressions and recurrence relations

R. Brent, D. Kuck, K. Maruyama (1973). The parallel evaluation of arithmetic
expressions without division. IEEE Trans. Comput. C-22, 532-534.

D. Kuck, Y. Muraoka (1974). Bounds on the parallel evaluation of arithmetic
expressions using associativity and commutativity. Acta Inform. 3, 203-216.
R.P. Brent (1973). The parallel evaluation of arithmetic expressions in loga-
rithmic time. J.F. Traub (ed.). Complexity of Sequential and Parallel Numerical
Algorithms, Academic Press, New York, 83-102.

R.P. Brent (1974). The parallel evaluation of general arithmetic expressions. J.
Assoc. Comput. Mach. 21, 201-206.

D.J. Kuck, K. Maruyama (1975). Time bounds on the parallel evaluation of
arithmetic expressions. SIAM J. Comput. 4, 147-162.

D.E. Muller, F.P. Preparata (1976). Restructuring of arithmetic expressions for
parallel evaluation. J. Assoc. Comput. Mach. 23, 534-543.

S. Winograd (1975). On the parallel evaluation of certain arithmetic expres-
sions. J. Assoc. Comput. Mach. 22, 477-492.

[. Munro, M. Paterson (1973). Optimal algorithms for parallel polynomial
evaluation. J. Comput. System Sci. 7, 189-198.

K. Maruyama (1973). On the parallel evaluation of polynomials. IEEE Trans.
Comput. C-22, 2-5.

L. Hyafil (1979). On the parallel evaluation of multivariate polynomials.
SIAM J. Comput. 8, 120-123.

L.G. Valiant (1980). Computing multivariate polynomials in parallel. Inform.
Process. Lett. 11, 44-45.

L.G. Valiant, S. Skyum (1981). Fast parallel computation of polynomials using
few processors. J. Gruska, M. Chytil (eds.). Mathematical Foundations of Com-
puter Science 1981, Lecture Notes in Computer Science 118, Springer, Berlin,
132-139.

These twelve papers deal with the parallel evaluation of arithmetic expres-
sions. The results differ with respect to the types of expressions considered
(e.g., expressions with or without division, polynomials) and the transforma-
tions allowed (using associativity, commutativity, etc.). There is also a distinc-
tion between bounded and unbounded parallelism.

Of general importance is a lemma from [Brent 1974]: if a computation can
be performed in time t with q operations and sufficiently many processors that
perform arithmetic operations in unit time, then it can be performed in time
t +(q —t)/p with p such processors.

P.M. Kogge, H.S. Stone (1973). A parallel algorithm for the efficient solution
of a general class of recurrence equations. IEEE Trans. Comput. C-22, 786-
793.

P.M. Kogge (1974). Parallel solution of recurrence problems. IBM J. Res.

114 G.A.P. Kindervater, J.K. Lenstra

Develop. 18, 138-148.

S.-C. Chen, D.J. Kuck (1975). Time and parallel processor bounds for linear
recurrence systems. IEEE Trans. Comput. C-24, 701-717.

H.T. Kung (1976). New algorithms and lower bounds for the parallel evalua-
tion of certain rational expressions and recurrences. J. Assoc. Comput. Mach,
23, 252-261.

L. Hyafil, H.T. Kung (1977). The complexity of parallel evaluation of linear
recurrences. J. Assoc. Comput. Mach. 24, 513-521.

D.D. Gajski (1981). An algorithm for solving linear recurrence systems on
parallel and pipelined machines. IEEE Trans. Comput. C-30, 190-206.

A.C. Greenberg, R.E. Ladner, M.S. Paterson, Z. Galil (1982). Efficient paral-
lel aigorithms for linear recurrence computation. Inform. Process. Lett. 15, 31-
35.

These seven papers outline the results obtained on solving recurrence rela-
tions. Several types of such relations are attacked succesfully, although for the
first-order recurrence problem p processors can achieve a speedup of at most
(2p +1)/3 [Hyafil & Kung 1977).

3.2. Numerical analysis and algebra

D. Heller (1978). A survey of parallel algorithms in numerical linear algebra.
SIAM Rev. 20, 740-771.

A survey of parallel techniques for problems in numerical linear algebra,
such as the solution of systems of linear equations and the computation of
eigenvalues, covering the literature up to 1977.

W.M. Gentleman (1978). Some complexity results for matrix computations on
parallel processors. J. Assoc. Comput. Mach. 25, 112-115.

MA. Franklin (1978). Parallel solution of ordinary differential equations.
IEEE Trans. Comput. C-27, 413-420.

J.M. Lemme, J.R. Rice (1979). Speedup in parallel algorithms for adaptive
quadrature. J. Assoc. Comput. Mach. 26, 65-71.

C.R. Jesshope (1980). The implementation of fast radix 2 transforms on array
processors. IEEE Trans. Comput. C-29, 20-27.

O. Wing, J.W. Huang (1980). A computation model of parallel solution of
linear equations. JEEE Trans. Comput. C-29, 632-638.

J.A.G. Jess, H.G.M. Kees (1982). A data stucture for parallel L/U decomposi-
tion. /EEE Trans. Comput. C-31, 231-239.

A. Borodin, J. Von Zur Gathen, J. Hopcroft (1982). Fast parallel matrix and
GCD computations. Inform. and Control 52, 241-256.

D.J. Evans, R.C. Dunbar (1983). The parallel solution of triangular systems of
equations. IEEE Trans. Compur. C-32, 201-204.

C.P. Amold, M.I. Parr, M.B. Dewe (1983). An efficient parallel algorithm for

the solution of large sparse linear matrix equations. IEEE Trans. Comput. C-
32, 265-272.

Parallel Aigorithms 115

J. Von Zur Gathen (1983). Parallel algorithms for algebraic problems. Proc.
15th Annual ACM Symp. Theory of Computing, 17-23.

More recent publications on a wide variety of problems in this very lively
research area, which is, however, not of immediate interest to the theory of
combinatorial optimization.

3.3. Nonlinear optimization

J.J. McKeown (1980). Aspects of parallel computation in numerical optimiza-
tion. F. Archetti, M. Cugiani (eds.). Numerical Techniques for Stochastic Sys-
tems, North-Holland, Amsterdam, 297-327.

Global optimization algorithms are adapted for SIMD and MIMD comput-
ers. Parallelization is only considered at a high level, e.g. concerning the
number of parallel function evaluations and local optimizations.

M.A. Franklin, N.L. Soong (1981). One-dimensional optimization on multipro-
cessor systems. IEEE Trans. Comput. C-30, 61-66.

The trade-off between two strategies for optimizing one-dimensional func-
tions on MIMD systems is analyzed. The first strategy evaluates the function
in parallel, the second one computes several function values at a time.

L.C.W. Dixon, K.D. Patel (1982). The place of parallel computation in numeri-
cal optimisation; VI parallel algorithms for nonlinear optimisation. I/BM
Symp. Parallel Processing, Rome, March 1982.

The modified Newton algorithm for nonlinear programming is parallelized,
and results of an implementation on the ICL/DAP SIMD computer are
presented.

4. COMBINATORICS
4.1. Sorting and related problems
(a) sorting networks

K.E. Batcher (1968). Sorting networks and their applications. Proc. AFIPS
Spring Joint Computer Conf. 32, 307-314.

Networks are presented that sort n keys in O (log’n) time using O (n log?n)
comparison elements. They are based on the principle of iterated merging. One
network uses bitonic sequences, the other merges two ordered lists by first
merging the odd and even numbered keys from both lists separately and then
comparing the results.

D.E. Muller, F.P. Preparata (1975). Bounds to complexities of networks for
sorting and for switching. J. Assoc. Comput. Mach. 22, 195-201.
A network with O(n?) elements for sorting n numbers in O(log n) time,

116 G.A.P. Kindervater, J.K. Lenstra

based on enumeration sort.

M. Ajtai, J. Komlos, E. Szemerédi (1983). An O(n log n) sorting network.
Proc. 15th Annual ACM Symp. Theory of Computing, 1-9.

A network with only O(n logn) comparison elements for sorting n
numbers in O(log n) time. The basis is a network with O(n) elements that
splits the set of numbers in a lower and an upper half in constant time with
only few errors.

(b) shared memory computers: merging

F. Gavril (1975). Merging with parallel processors. Comm. ACM 18, 588-591.

Merging two ordered sets using a small number of processors. The algo-
rithm first splits the sets in an appropriate way and then merges the smaller
parts in parallel. The processors merge the subsets sequentially.

R.H. Barlow, D.J. Evans, J. Shanehchi (1981). A parallel merging algorithm.
Inform. Process. Lett. 13, 103-106.

Merging k sorted lists using p <k processors. From one list £ —1 elements
are chosen and their place in the other lists is determined. The processors then
merge the sublists obtained sequentially. The behavior of the algorithm
strongly depends on the input.

(c) shared memory computers: sorting

S. Even (1974). Parallelism in tape-sorting. Comm. ACM 17, 202-204.
Synchronized MIMD.
Sorting algorithms using merge sort. They have an optimial speedup as
long as the number of processors is small relative to input size.

S. Todd (1978). Algorithm and hardware for a merge sort using multiple pro-
cessors. IBM J. Res. Develop. 22, 509-517.

Synchronized MIMD.

A parallel version of the straight merge sort algorithm. It runs in O(n)
time using log n processors and can be implemented in hardware.

L.G. Valiant (1975). Parallelism in comparison problems. SIAM J. Comput.
4, 348-355.

Valiant explores the parallelism in problems like finding the maximum,
merging and sorting. If only comparisons are counted and the overhead is
neglected and if the input size n is not less than the number p of processors,

speedups of (p /log log p) can be achieved. For example, n /2 processors can
sort n keys in O(log n log log n) steps.

D.S. Hirschberg (1978). Fast parallel sorting algorithms. Comm. ACM 21,

Parallel Algorithms 117

657-661.

SIMD, shared memory, simultaneous reads, no similtaneous writes.
An algorithm to sort n keys in O(k log n) time using n'*'* processors.

It employs the result from [Gavril 1975] (see §4.1(b)) and a parallel bucket sort
routine.

F.P. Preparata (1978). New parallel-sorting schemes. IEEE Trans. Comput. C-
27, 669-673.

SIMD, shared memory, (no) simultaneous reads, no simultaneous writes.

Two algorithms are described to sort n numbers with enumeration sort.
The first one allows read conflicts, uses the merging scheme from [Valiant
1975] (see above) and runs in O(log n) time on n log n processors, disregard-
ing some of the overheads. The second one disallows read conflicts, uses the
odd-even merging scheme from [Batcher 1968] (see §4.1(a)) and runs in
O (k log n) time on n'** processors.

Y. Shiloach, U. Vishkin (1981). Finding the maximum, merging, and sorting in
a parallel computation model. J. Algorithms 2, 88-102.

Synchronized MIMD, shared memory, simultaneous reads, simultaneous
writes provided the same value is written.

The maximum finding algorithm from [Valiant 1975] (see above) is imple-
mented so as to achieve the same time bound while counting the overheads.
Further, a merge sort algorithm is given, free of write conflicts and having the
same time and processor complexities as those from [Hirschberg 1978] and
[Preparata 1978] (see above).

R. Reischuk (1981). A fast probabilistic parallel sorting algorithm. Proc. 22nd
Annual IEEE Symp. Foundations of Computer Science, 212-219.

Synchronized MIMD, shared memory, simultaneous reads, no simultaneous
writes.

An algorithm to sort n keys in O(log n) average time using n processors.
The set of keys is partitioned into [\/rT |+1 groups, which have size
O(Vn logn) with probability close to 1, and next the groups are sorted
separately.

A. Borodin, J.E. Hopcroft (1982). Routing, merging and sorting on parallel
models of computation; extended abstract. Proc. 14th Annual ACM Symp.
Theory of Computing, 338-344.

In fixed connection networks with indegrees d, oblivious routing strategies
require Q(Vn /d*?) time. On a synchronized MIMD computer with shared
memory, simultaneous reads but no simultaneous writes, the merging and sort-
ing schemes from [Valiant 1975] (see above) are implemented such that the
running time is of the same order as the number of comparison steps.

C.P. Kruskal (1982). Results in parallel searching, merging and sorting

118 G.A.P. Kindervater, J.K. Lenstra

(summary). Proc. 1982 Internat. Conf. Parallel Processing, 196-198.
Synchronized MIMD, shared memory, simultaneous reads, no simultaneous
writes.
Improvements on the results from [Valiant 1975] (see above). E.g, a merge
sort algorithm is given that sorts n keys in O(log n log log n /log log log n)
time using n processors.

M. Aigner (1982). Parallel complexity of sorting problems. J. Algorithms 3,
79-88.
Synchronized MIMD, no simultaneous reads, no simultaneous writes.
Lower and upper bounds are given on the number of comparison steps
needed for selection, merging and sorting.

(d) shared memory computers. convex hull

D. Nath, SN. Maheshwari, P.C.P. Bhatt (1981). Parallel algorithms for the
convex hull problem in two dimensions. W. Héndler (ed.). CONPAR 81, Lec-
ture Notes in Computer Science 111, Springer, Berlin, 358-372.

SIMD, shared memory, (no) simultaneous reads, no simultaneous writes.

If read conflicts are allowed, the convex hull of » points in the plane can
be found in O((n/p)log n + log p log n) time using p <n processors and in
O(k logn) time using n'"'* processors (k <logn). If read conflicts are
disallowed, the same bounds still hold. After an initial sort of the points on
one of the coordinates, the algorithms use a divide and conquer strategy.

(e) mesh connected networks: permuting and sorting

S.E. Orcutt (1976). Implementation of permutation functions in Illiac IV-type
computers. IEEE Trans. Comput. C-25, 929-936.

SIMD, n Xn mesh connected network.

This implementation of the bitonic sort from [Batcher 1968] (see §4.1(a))
performs a permutation of the n? elements in O (n log n) time.

C.D. Thompson, H.T. Kung (1977). Sorting on a mesh-connected computer.
Comm. ACM 20, 263-271.

SIMD, n Xn mesh connected network.

Sorting n? elements in snake-like (or shuffled) row-major order in O(n)
time, based on the odd-even (bitonic) sort from [Batcher 1968] (see §4.1(a)).

D. Nassimi, S. Sahni (1979). Bitonic sort on a mesh-connected parallel com-
puter. IEEE Trans. Comput. C-28, 2-7.

SIMD, n Xn mesh connected network.

Sorting n? elements in row-major order in O(n) time by an adaptation of

the bitonic sort from [Batcher 1968] (see §4.1(a)) different than that from
[Thompson & Kung 1977] (see above).

Parallel Algorithms 119

D. Nassimi, S. Sahni (1980). An optimal routing algorithm for mesh-connected
parallel computers. J. Assoc. Comput. Mach. 27, 6-29.

SIMD, k-dimensional mesh connected network (k =2).

An algorithm for permuting data, which is optimal in the sense that it uses
the minimum number of unit distance routing steps.

M. Kumar, D.S. Hirschberg (1983). An efficient implementation of Batcher’s
odd-even merge algorithm and its application in parallel sorting schemes.
IEEE Trans. Comput. C-32, 254-264.

SIMD, n Xn mesh connected network.

Another algorithm for sorting n? elements in O(n) time based on [Batcher
1968] (see §4.1(a)).

H.-W. Lang, M. Schimmler, H. Schmeck, H. Schroder (1983). A fast scrting
algorithm for VLSI. J. Diaz (ed.). Proc. 10th Internat. Coll. Automara,
Languages and Programming, Lecture Notes in Computer Science 154,
Springer, Berlin, 408-419.

Synchronized MIMD, n Xn mesh connected network.

An algorithm for sorting n? elements in O(n) time, based on odd-even
transposition sort. A systolic version is presented that runs in O(n) time using
O (n?) cells.

(f) other interconnection networks: permuting and sorting

G. Baudet, D. Stevenson (1978). Optimal sorting algortihms for parallel com-
puters. IEEE Trans. Comput. C-27, 84-87.

SIMD, (i) linearly connected network, (il) mesh connected network, (iii)
perfect shuffle network.

As long as the number of processors stays small compared to the number
of keys, odd-even transposition sort has an optimal speedup on (i) and the
methods from [Batcher 1968] (see §4.1(a)) on (ii) and (iii).

D. Nassimi, S. Sahni (1982). Parallel permutation and sorting algorithms and a
new generalized connection network. J. Assoc. Comput. Mach. 29, 642-667.

SIMD, (i) cube connected network, (ii) perfect shuffle network.

Sorting algorithms similar to that from [Preparata 1978] (see §4.1(c)) are
given for networks (i) and (ii); sorting n elements requires O(k log n) time
using n! "% processors (k < log n). Further, permutation algorithms that are
faster by a constant factor are given for these machines.

L.G. Valiant (1982). A scheme for fast parallel communication. SIAM J.
Comput. 11, 350-361.

(Synchronized) MIMD, cube connected network.

Description of a randomized two-phase algorithm that performs permuta-
tions on an »n-node cube connected network in O(log n) time with probability

120 G.A.P. Kindervater, J.K. Lenstra

close to 1. In the first phase each packet is sent to a randomly chosen node, in
the second phase the packets find their way to their destination.

J.H. Reif, L.G. Valiant (1983). A logarithmic time sort for linear size networks.
Proc. 15th Annual ACM Symp. Theory of Computing, 10-16.

(Synchronized) MIMD, cube connected cycles network.

A randomized algorithm for sorting n keys on an n-node cube connected
cycles network in O(a log n) time with probability at least 1—n¢, using ideas
from [Valiant 1982] (see above).

(g) interconnection networks: data transmission

D. Nassimi, S. Sahni (1981). Data broadcasting in SIMD computers. IEEE
Trans. Comput. C-30, 101-106.

SIMD, (i) mesh connected network, (ii) cube connected network, (iii) per-
fect shuffle network.

Algorithms for data transmission, with particular attention for read and
write conflicts.

L.G. Valiant, G.J. Brebner (1981). Universal schemes for parallel communica-
tion. Proc. 13th Annual ACM Symp. Theory of Computing, 263-277.

Description of a randomized data transmission algorithm based on ideas
from [Valiant 1982] (see §4.1(f)). With probability close to 1, it runs in
O (log n) time on networks like the n-cube.

4.2. Graph theory

Many parallel algorithms have been developed for problems on graphs, such as
finding connected components, transitive closures, spanning trees and shortest

paths. Throughout this subsection, graphs (digraphs) have n vertices and m
edges (arcs).

(a) shared memory computers

E. Reghbati (Arjomandi), D.G. Corneil (1978). Parallel computations in graph
theory. SIAM J. Compur. 7, 230-237.
SIMD, shared memory, simultaneous reads, no simultaneous writes.
Finding the connected components of a graph and the weakly and strongly
connected components of a digraph has the same time complexitg' as finding
the transitive closure and therefore requires O (log?n) time using n° processors.
Of three different bounded parallel graph search techniques, namely k -depth,

breadth-depth and breadth-first search, the last one achieves a bound close to
optimal if m = ©(n?).

D.M. Eckstein, D.A. Alton (1977). Parallel Searching of Non-Sparse Graphs,

Paraliel Algorithms 121

Technical report 77-02, Department of Computer Science, University of lowa,
Iowa City.

Synchronized MIMD, shared memory, simultaneous reads, no simultaneous
writes.
Depth-first search and breadth-first search of a graph can be performed in

O(n+m/p) time using p processors. These algorithms are essentially optimal
ifn = O(m).

D.S. Hirschberg, A.K. Chandra, D.V. Sarwate (1979). Computing connected
components on parallel computers. Comm. ACM 22, 461-464.

SIMD, shared memory, simultaneous reads, no simultaneous writes.

The connected components of a graph and hence the transitive closure of
an n Xn symmetric Boolean matrix can be obtained in O (logn) time using n?
processors and even using n [n/log n| processors. The connected components
are built up by merging smaller parts together.

C. Savage, J. Ja’Ja’ (1981). Fast, efficient parallel algorithms for some graph
problems. SIAM J. Comput. 10, 682-691.
SIMD, shared memory, simultaneous reads, no simultaneous writes.
Algorithms are presented for finding the connected and biconnected com-
ponents, the bridges and a minimum spanning tree of a graph in O(log’n)
time. The number of processors used is small enough to make the parallel
implementations relatively efficient.

D. Nath, S.N. Maheshwari (1982). Parallel algorithms for the connected com-
ponents and minimal spanning tree problems. Inform. Process. Lett. 14, 7-11.

SIMD, (i) shared memory without simultaneous reads and simultaneous
writes, (ii) perfect shuffle network, (iii) orthogonal trees network.

The algorithm from [Hirschberg, Chandra & Sarwate 1979] (see above) is
modified such that it finds the connected components of a graph or a
minimum spanning tree in a weighted connected graph in O (log?n) time using
n* (n[n/logn]) processors on a shared memory model without read (and
write) conflicts. Implementations on networks (i) and (iii) require
O (log*n log log n) time.

F.Y. Chin, J. Lam, I-N. Chen (1982). Efficient parallel algorithms for some
graph problems. Comm. ACM 25, 659-665.

SIMD, shared memory, simultaneous reads, no simultaneous writes.

The algorithm from [Hirschberg, Chandra & Sarwate 1979] (see above) is
modified to run in O(n*/p + log’n) time using p processors (p =n), ie., in
O(log?n) time for p = n[n/log’n]. Slight adaptations of the algorithm find
the weakly connected components of a digraph, a spanning forest and a
minimum spanning tree.

Y. Shiloach, U. Vishkin (1982). An O(log n) parallel connectivity algorithm.

122 G.A.P. Kindervater, J.K. Lenstra

J. Algorithms 3, 57-67.

Synchronized MIMD, shared memory, simultaneous reads, simultaneous
writes (one (unknown) processor succeeds). _

In this strong model, the connected components of a graph can be found in
only O(log n) time using n +2m pProcessors.

J. Ja’Ja’, J. Simon (1982). Parallel algorithms in graph theory: planarty testing.
SIAM J. Comput. 11, 314-328.

Synchronized MIMD, shared memory, simultaneous reads, no simultaneous
writes.

Finding the connected components and planarity testing can be done in
O (log’n) time using a polynomial number of processors.

L. Kulera (1982). Parallel computation and conflicts in memory access.
Inform. Process. Lett. 14, 93-96. .

SIMD, shared memory, simultaneous reads, simultaneous writes.

In models where simultaneous writes are allowed under certain conditions,
the connected components of a graph can be found in only O(log n) time
using a polynomial number of processors. Similar results hold for other graph
problems such as finding a minimum spanning tree.

N. Deo, C.Y. Pang, R.E. Lord (1980). Two parallel algorithms for shortest
path problems. Proc. 1980 Internat. Conf. Parallel Processing, 244-253.

MIMD, shared memory, simultaneous reads, no simultaneous writes.

The Moore/Pape-D’Esopo algorithm for finding all shortest paths from one
vertex and the Floyd-Warshall algorithm for finding the shortest paths between
all pairs of vertices are implemented on the Heterogeneous Element Processor,
an MIMD machine.

N. Deo, Y.B. Yoo (1981). Parallel algorithms for the minimum spanning tree
problem; summary. Proc. 1981 Internat. Conf. Parallel Processing, 188-189.
MIMD, shared memory, simultaneous reads, no simultaneous writes.
Three minimum spanning tree algorithms are considered: Prim-Dijkstra,
requiring O (n/p +np) time on p processors (p <n); Kruskal, achieving no
speedup; and Sollin, requiring O ((n*/p) log n) time on P processors (p <n).

J.A. Wisniewski, A.H. Sameh (1982). Parallel algorithms for network routing
problems and recurrences. SIAM J. Algebraic Discrete Meth. 3, 379-394.

The single source shortest path problem can be stated as solving systems of
the form x = Ax +b in the regular algebra of Carré. Solution methods,
mostly known from linear algebra, are parallelized.

(b) interconnection networks

K.N. Levitt, W.H. Kautz (1972). Cellular arrays for the solution of graph

Parallel Algorithms 123

problems. Comm. ACM 15, 789-801.

Synchronized MIMD, two-dimensional mesh connected network.

The Floyd-Warshall shortest path algorithm, Kruskal’s minimum spanning
tree algorithm and other graph theoretical algorithms are implemented on spe-
cial purpose hardware, buildable using (V)LSI technology.

L.J. Guibas, H.T. Kung, C.D. Thompson (1979). Direct VLSI implementation
of combinatorial algorithms. Caltech Conf. VLSI, 509-525.

Synchronized MIMD, n X»n mesh connected network.

For the transitive closure problem and a special class of dynamic program-
ming problems, algorithms are designed that run in O(n) time. They are suit-
able for VLSI implementation.

F.L. Van Scoy (1980). The parallel recognition of classes of graphs. IEEE
Trans. Comput. C-29, 563-570.

Synchronized MIMD, n Xn mesh connected network.

On this network, Warshall’s transitive closure algorithm is implemented to
run in O(n) time.

D. Nassimi, S. Sahni (1980). Finding connected components and connected
ones on a mesh-connected parallel computer. SIAM J. Comput. 9, 744-757.

SIMD, k-dimensional mesh connected network.

Consider a graph with n = /¥ vertices, none of which has degree more
than d. Following [Hirschberg, Chandra & Sarwate 1979] (see §4.2(a)), the con-
nected components can be found in O(k3(k +d)I log/) time on a k-
dimensional mesh connected network with /¥ processing elements. For d = 2,
the algorithm is modified to run in O(k*) time. The connected ones problem,
a connected connectivity problem, requires O (k®/) time.

M.J. Atallah, S.R. Kosaraju (1982). Graph problems on a mesh-connected pro-
cessor array (preliminary version). Proc. I14th Annual ACM Symp. Theory of
Computing, 345-353.

SIMD, n Xn mesh connected network.

On this network, the bridges, the articulation points, the length of a shor-
test cycle and a minimum spanning tree of a graph are found in O (n) time.

S.E. Hambrusch (1983). VLSI algorithms for the connected component prob-
lem. SIAM J. Comput. 12, 354-365.

Synchronized MIMD, k -dimensional mesh connected network.

Algorithms for finding connected components in O(n!*!/%) time on a k-
dimensional mesh connected network with n processors, suitable for VLSI
implementation.

J.L. Bentley (1980). A parallel algorithm for constructing minimum spanning
trees. J. Algorithms 1, 51-59.

124 G.A.P. Kindervater, J.K. Lenstra

Synchronized MIMD, tree structured network. _ _

A parallel version of the Prim-Dijkstra minimum spanning tree a.lg(.)nthm,
requiring O(n logn) time on a tree structured machine consisting of
O (n/log n) processors.

E. Dekel, D. Nassimi, S. Sahni (1981). Parallel matrix and graph algorithms.
SIAM J. Comput. 10, 657-675.

SIMD, (i) perfect shuffle network, (ii) cube connected network.

On both networks, two nXn matrices can be multiplied in
O(n/m +log n) time using mn?® processors and in O (n%/m +m(n/m)**') time
using m? processors (1<<m <n). These algorithms are applied to solve several
problems on graphs, e.g., shortest path problems.

(c) distributed algorithms

R.G. Gallager, P.A. Humblet (1979). Minimum Weight Spanning Trees, Techni-
cal report LIDS-P-906, Massachusetts Institute of Technology, Cambridge.
MIMD, full interconnection.
This distributed minimum spanning tree algorithm is an asynchronous
implementation of Sollin’s method and requires O(n log n) time using n pro-
CESSOrs.

P.A. Humblet (1981). A Distributed Algorithm for Minimum Weight Directed
Spanning Trees, Technical report LIDS-P-1149, Massachusetts Institute of
Technology, Cambridge.

MIMD, full interconnection.

This algorithm for finding » minimum spanning arborescences, one rooted
at each vertex, parallelizes the Chu-Liu/Edmonds/Bock algorithm and requires
O(n*) time using n processors.

K.M. Chandy, J. Misra (1982). Distributed computation on graphs: shortest
path algorithms. Comm. ACM 25, 833-837.
MIMD, full interconnection.

A distributed version of Ford’s algorithm for finding all shortest paths
from a single vertex, terminating properly if negative cycles occur.

5. COMBINATORIAL OPTIMIZATION

5.1. Well-solvable problems: polylog parallel algorithms

(a) sequencing and scheduling

The machine scheduling problems that have been subjected to parallelization

will be indicated below by means of the concise notation of Graham, Lawler,
Lenstra & Rinnooy Kan (4nn. Discrete Math. 5 (1979), 287-326).

Parallel Algorithms 125

E. Dekel, S. Sahni (1983A). Binary trees and parallel scheduling algorithms.
IEEE Trans. Comput. C-32, 307-315.
SIMD, shared memory, no simultaneous reads, no simultaneous writes.
Binary trees turn out to be useful for all sorts of parallel computations.
E.g.; the partial sums of a series of n numbers can be computed in O (log n)
time using O (n /log n) processors
scheduling problems considered sequential time parallel time 3 processors

Plp;=1r; | L O(n logn) O(log’n) O(n)
Lipmin,r; | Ly O(n log n) O(log’n) o(n)
Vi prec p; =1,r; | L pu 0(n? O(log’n) O (n*/log n)
1l prec.pmin r; | Ly 0(n? O(log*n) O (n*/log n)
1112y, O(n logn) O(log*n) O(n)
lip;=112Zw; U; O(n log n) O (log*n) 0 (n)

E. Dekel, S. Sahni (1981). A4 Parallel Matching Algorithm for Convex Bipartite
Graphs and Applications to Scheduling, Technical report 81-3, Computer Science
Department, University of Minnesota, Minneapolis.

E. Dekel, S. Sahni (1982). A parallel matching algorithm for convex bipartite
graphs. Proc. 1982 Internat. Conf. Parallel Processing, 178-184.

SIMD, shared memory, no simultaneous reads, no simultaneous writes.

A bipartite graph with vertex sets V = {v,,..,v,}, W = {w},..,w,,} and
edge set E is convex if Y, €V 1), u(j): (vy,w)EE & I(j) < i <u(j).
The binary tree method provides the basis of an algorithm for finding a max-
imum matching in such a graph in O (log’n) time using O (n) processors.
scheduling problems considered sequential time parallel time # processors

1p; =15 | f max O (n%log n) O(log’n) O (n*/log’n)
lp;=1r; 1Zw; U; 0 (n? O (log’n) O(n*/log n)
P2ipmin.p; =1prec | C o3 O(log’n) O (n*/log n)

E. Dekel, S. Sahni (1983B). Parallel scheduling algorithms. Oper. Res. 31, 24-
49.

SIMD, shared memory, no simultaneous reads, no simultaneous writes.

The developed algorithms rely on parallel sorting and the parallel computa-
tion of partial sums.
scheduling problems considered sequential time parallel time # processors

P |pmin | C oy O(n) O(log n) O(n/log n)
O I1Z2¢; O(n logmn) O(logmn) O(m*n?)
llp, =112y, O(n) O(logn) O(n?)
lip;=11Zw; U, O(n log n) O(log n) o(n% (1)
11r; |max; {max{e(E,),f (T;)}} Of(n logn) O(log n) o(n? [2]
PIr,C;=r,+p;|m O(n log n) O(log n) omn? 3]

[1] See [Dekel & Sahni 1983A] above for a different algorithm.

[2] E; = max{0,r; —(C; —p;)} is the earliness of job j; e & f are nondecreas-
ing functions with e(0) = f(0) = 0.

[3] The channel assignment problem: minimize the number of identical parallel

126 G.A.P. Kindervater, J.K. Lenstra

machines needed to process a set of jobs with fixed starting times.
(b) miscellaneous

N. Megiddo (1983). Applying parallel computation algorithms in the design of
serial algorithms. J. Assoc. Comput. Mach. 30, 852-865.

The efficiency of serial algorithms for one problem may be improved by
exploiting the parallelism in other problems. E.g., Valiant’s and Preparata’s
parallel sorting algorithms (see §4.1(c)) turn out to be useful for cost-effective
resource allocation and parallel all-pairs shortest path algorithms for the
minimum ratio cycle problem. Other examples are given for scheduling and
spanning tree problems.

5.2. Well-solvable problems, log space complete for 9
(a) maximum flow

L.M. Goldschlager, R.A. Shaw, J. Staples (1982). The maximum flow problem
is log space complete for P. Theoret. Comput. Sci. 21, 105-111.

The result stated in the title is obtained through a log space transformation
from the monotone circuit value problem (see [Goldschlager 1977], §2.2).

Y. Shiloach, U. Vishkin (1982). An O(nzlog n) parallel MAX-FLOW algo-
rithm. J. Algorithms 3, 128-146.

Synchronized MIMD, shared memory, simultaneous reads, simultaneous
writes provided the same value is written.

A p-processor system is developed that solves the maximum flow problem
on an n-vertex network in O(n’(log n)/p) time, for p <n. The algorithm is
closely related to the sequential methods due to Dinic and Karzanov, that use
layered networks.

D.B. Johnson, S.M. Venkatesan (1982). Parallel algorithms for minimum cuts
and maximum flows in planar networks (preliminary version). Proc. 23rd
Annual IEEE Symp. Foundations of Computer Secience, 244-254.

Synchronized MIMD, shared memory, simultaneous reads, no simultaneous
writes.

Computing the maximum flow in planar directed n-vertex networks
requires 0(log3n) time using I processors and 0(10g2n) time using O(n 8
processors; in planar undirected networks, O (log?n) time and O (n*) processors
suffice. The results are based on the fact that the minimum cut capacity in a

network N is equal to the length of a minimum forward cut cycle in a network
related to the dual network of N.

Parallel Algorithms 127

(b) linear programming

D. Dobkin, R.J. Lipton, S. Reiss (1979). Linear programming is log-space hard
for P. Inform. Process. Lett. 8, 96-97.

In conjunction with Khachian’s algorithm, this implies that linear program-
ming is log space complete for 9. The log space transformation starts from the
unit resolution problem (see [Jones & Laaser 1974], §2.2).

B. Kamdoum (1982). Speeding up the primal simplex algorithm on parallel
computer. SIGMAP Newsletter 31, 19-23.

Each pivot step of the simplex method can be executed p times faster when
p processors are available and p is small compared to the number n of vari-
ables and the number m of constraints.

N. Megiddo (1982). Poly-log Parallel Algorithms for LP with an Application to
Exploding Flying Objects, Unpublished manuscript.

Megiddo has previously shown that linear programs can be solved by an
O(m) sequential algorithm when n is fixed (J. Assoc. Comput. Mach. (to
appear)). A parallel implementation of this method runs in O(log"m) time.
Improvements lead to an algorithm requiring O (log" ~'m log log m) time and
a probabilistic algorithm requiring O (log m (log log m)" ~?) expected time on a
parallel RAM model. An interesting application to warfare is presented.

5.3. 9P-hard problems and enumerative methods
(a) knapsack

A.C.-C. Yao (1982). On parallel computation for the knapsack problem. J.
Assoc. Comput. Mach. 29, 898-903.

In parallel computation models with real arithmetic, solution of the knap-
sack problem with n real inputs requires an exponential number of processors
if a running time of at most Vn /2 is to be achieved.

(b) traveling salesman

E.A. Pruul (1975). Parallel Processing and a Branch-and-Bound Algorithm,
M.Sc. thesis, Cornell University, Ithaca, NY.

MIMD, shared memory.

A p-processor implementation of the subtour elimination algorithm for the
traveling salesman problem with n cities is developed and simulated on a
sequential machine. For small p and n, the simulated parallel algorithm runs
faster than the traditional serial method.

M.J. Quinn, N. Deo (1983). A Parallel Approximate Algorithm for the
Euclidean Traveling Salesman Problem, Report CS-83-105, Computer Science

128 G.A.P. Kindervater, J.K. Lenstra

Department, Washington State University, Pullman. ‘

MIMD, shared memory, simultaneous reads, no simultaneous writes.

The farthest-insertion heuristic for the Euclidean traveling salesman prob-
lem is implemented to run on the Heterogeneous Element Processor (see [Deo,
Pang & Lord 1980], §4.2(a)) with p processors in O (n*/p +np) time.

(c) dynamic programming

J. Casti, M. Richardson, R. Larson (1973). Dynamic programming and parallel
computers. J. Optim. Theory Appl. 12, 423-438.

Finite-stage dynamic programming procedures allow a natural paralleliza-
tion. E.g., at each stage, the various states can be dealt with simultaneously by
different processors.

D. Al-Dabass (1980). Two methods for the solution of the dynamic program-
ming algorithm on a multiprocessor cluster. Optimal Control Appl. Methods 1,
227-238.

The efficieny of the algorithms developed in the previous paper is analyzed
on a master-slave architecture.

P. Bertolazzi, M. Pirozzi (undated). Parallel Algorithms for Dynamic Program-
ming Algorithms, Unpublished manuscript.

After a review of the methods proposed in the above two papers, for two
classes of problems an implementation on a special configuration is shown to
reduce computational complexity.

(d) branch-and-bound

O.I. El-Dessouki, W.H. Huen (1980). Distributed enumeration on between
computers. IEEE Trans. Comput. C-29, 818-825.

MIMD, full interconection.

Note. In the title, read ‘network’ for ‘between’.

A distributed branch-and-bound algorithm. Each processor determines by
itself which part of the tree it searches for an optimal solution.

F.W. Burton, G.P. McKeown, V.J. Rayward-Smith, M.R. Sleep (1982). Paral-
lel processing and combinatorial optimization. L.B. Wilson, C.S. Edwards, V.J.

Rayward-Smith (eds.). Combinatorial Optimization 111, University of Stirling,
19-36.

MIMD, r-ary n-cube.
Distributed branch-and-bound algorithms are considered for execution on

the r-ary n-cube, a processor network that can be built using VLSI techniques.
Each processor is invoked by one of its neighbors.

